ObjectiveThis study aimed to construct plant expression vector for recombinant human epidermal growth factor (hEGF) and further to provide a basis for the expression of hEGF in peanut hairy root system. MethodAccording to the hEGF sequence in GenBank, hEGF was synthesized artificially; subsequently, hEGF gene was ligated with green fluorescent protein (GFP) gene, and their ligation product was then amplified with primers flanked with corresponding endonuclease cleavage sites, followed by double digestion by Sal I and EcoR I of the amplified products; next, pRI 101 AN DNA was extracted and digested by both Sal I and EcoR I; susequently, the digestion products of hEGF and GFP ligation fragment by Sal I and EcoR I and the digestion products of pRI 101 AN plasmid DNA by Sal I and EcoR I were ligated, and their ligation product was transformed into Escherichia coli XL10-Gold, followed by extraction of DNA from the recombinants exhibiting green fluorescence, which was then identified by enzymatic digestion and PCR, and the verified recombinant plasmid DNA was named pBZG101. ResultHuman epidermal growth factor gene (hEGF) and green fluorescent protein gene (GFP) were successfully ligated, and their ligation fragment was successfully ligated to pRI 101 AN DNA, finally with the acquirement of the plant expression vector for recombinant human epidermal growth factor-(pBZG101). ConclusionThe plant expression vector for recombinant human epidermal growth factor-(pBZG101)- was successfully constructed in this study.