To ensure revulsive driving of intelligent vehicles at intersections, a method is presented to detect and recognize the traffic lights. First, the stabling siding at intersections is detected by applying Hough transformation. Then, the colors of traffic lights are detected with color space transformation. Finally, self-associative memory is used to recognize the countdown characters of the traffic lights. Test results at 20 real intersections show that the ratio of correct stabling siding recognition reaches up to 90%;and the ratios of recognition of traffic lights and divided characters are 85% and 97%, respectively. The research proves that the method is efficient for the detection of stabling siding and is robust enough to recognize the characters from images with noise and broken edges.
A method which extracts traffic information from an MPEG-2 compressed video is proposed. According to the features of vehicle motion, the motion vector of a macro-block is used to detect moving vehicles in daytime, and a filter algorithm for removing noises of motion vectors is given. As the brightness of the headlights is higher than that of the background in night images, discrete cosine transform (DCT)coefficient of image block is used to detect headlights of vehicles at night, and an algorithm for calculating the DCT coefficients of P-frames is introduced. In order to prevent moving objects outside the expressway and video shot changes from disturbing the detection, a driveway location method and a video-shot-change detection algorithm are suggested. The detection rate is 97.4% in daytime and 95.4% in nighttime by this method. The results prove that this vehicle detection method is effective.