[Objective] The aim was to explore the photosynthetic characteristics of Turpan grapes under high temperature and strong light conditions. [Method] Using six grape varieties as experimental materials, the photosynthesis and fluorescence parameters of the grape varieties under high temperature and high light were determined. [Result] The results showed that Thompson Seedless showed strong selfprotection ability on the photosynthetic mechanism in the adversity, and lower photo inhibition on photosynthesis under high temperature and high light than other varieties in which Crimson Seedless was second place. Otherwise the damage on photosynthetic mechanism of Kyoho and Red Globe under the adversity environment is more dipper than the other varieties, and poor self-protection ability. [Conclusion]Thompson Seedless and Crimson Seedless had a strong adaptability for high temperature and strong light. But the adaptability of Kyoho and Red Globe were relatively poor.
[Objective] This study compared the leaf photosynthetic characteristics of Turpan grape cultivated in greenhouses and open field to provide a scientific basis for the high-quality and high-yield cultivation of grape. [Method] Two precocious grape varieties as experimental materials were cultivated in greenhouses and open field, and their net photosynthetic rates (Pn), photo-response curves and CO2 response curves were determined using Li-400XT portable photosynthesis system. [Result] The leaf Pn of the two varieties cultivated in open field was higher than that in greenhouse. The Pn of Hongqitezao cultivated in open field was the highest, up to 19.79 μmol/(m^2·s); in the photo-response curves, Hongqitezao cultivated in greenhouse had the largest Pnmax and apparent quantum yield (AQY), while the Flame Seedless in greenhouse had the smallest light compensation point (LCP). The light saturation point (LSP) value of greenhouse cultivation was higher than that of open field cultivation. In the CO2 response test, the dark respiration rate (Rd) and Pnmax of greenhouse cultivation were higher than those of open field cultivation, and the carboxylation efficiency (CE) of greenhouse cultivation was lower than that of open field cultivation; the CO2 compensation point (CCP) and CO2 saturation point (CSP) of greenhouse cultivation were lower than those of open field cultivation. [Conclusion] The utilization of elevated light in greenhouse cultivation was more efficient than in open field cultivation; however, the utilization of elevated CO2 in greenhouse cultivation was weaker than tin open field cultivation.