Consider the first order neutral delay differential equation with positive and negative coefficients:[x(t)-c(t)x(t-γ)]+p(t)x(t-τ)-Q(t)x(t-δ)=0,t≥t 0,(1)where c,p,Q∈C((t 0,∞),R +),R +=(0,∞),γ>0,t>δ≥0. We obtain the sufficient condition for the existence of positive solutions of Eq.(1). As a corollary, we improve the correspondent result in by removing the condition∫ ∞ c 0 (t) d t=∞,where (t)=p(t)-Q(t-τ+δ)≥0.