您的位置: 专家智库 > >

吴丹

作品数:1 被引量:5H指数:1
供职机构:中法生物医学信息研究中心更多>>
发文基金:国家教育部博士点基金国家自然科学基金更多>>
相关领域:自动化与计算机技术更多>>

文献类型

  • 1篇中文期刊文章

领域

  • 1篇自动化与计算...

主题

  • 1篇NET
  • 1篇NETWOR...
  • 1篇FACE_R...

机构

  • 1篇东南大学
  • 1篇中法生物医学...

作者

  • 1篇伍家松
  • 1篇舒华忠
  • 1篇姜龙玉
  • 1篇吴丹

传媒

  • 1篇Journa...

年份

  • 1篇2015
1 条 记 录,以下是 1-1
排序方式:
Kernel principal component analysis network for image classification被引量:5
2015年
In order to classify nonlinear features with a linear classifier and improve the classification accuracy, a deep learning network named kernel principal component analysis network( KPCANet) is proposed. First, the data is mapped into a higher-dimensional space with kernel principal component analysis to make the data linearly separable. Then a two-layer KPCANet is built to obtain the principal components of the image. Finally, the principal components are classified with a linear classifier. Experimental results showthat the proposed KPCANet is effective in face recognition, object recognition and handwritten digit recognition. It also outperforms principal component analysis network( PCANet) generally. Besides, KPCANet is invariant to illumination and stable to occlusion and slight deformation.
吴丹伍家松曾瑞姜龙玉姜龙玉舒华忠
共1页<1>
聚类工具0