刘博
- 作品数:3 被引量:16H指数:2
- 供职机构:河北大学更多>>
- 发文基金:河北省自然科学基金国家自然科学基金河北省高等学校科学技术研究指导项目更多>>
- 相关领域:自动化与计算机技术更多>>
- 基于相对分类信息熵的进化特征选择算法被引量:7
- 2016年
- 针对离散值数据集特征选择问题,提出基于相对分类信息熵的进化特征选择算法.使用遗传算法搜索最优特征子集,使用相对分类信息熵度量特征子集的重要性.以相对分类信息熵作为适应度函数,使用二进制编码问题的解,使用赌轮方法选择产生下一代个体.实验表明文中算法在测试精度上优于其它方法,此外还从理论上证明文中算法的可行性.
- 翟俊海刘博张素芳
- 关键词:数据预处理进化计算遗传算法信息熵
- 不一致性进化特征选择方法被引量:1
- 2017年
- 特征选择是机器学习中重要的数据预处理步骤,它从原始特征集合中,选择一个重要的子集,以改进学习系统的性能或降低学习系统的计算复杂度,对学习系统的性能有重要的影响.针对离散值特征选择问题,提出一种基于遗传算法的特征选择方法.该方法利用遗传算法搜索最优或次优特征子集.具体地,利用二进制数对问题的解编码,利用不一致性度量作为适应度函数.实验结果显示本文提出的特征选择方法是行之有效的.提出的方法具有如下三个特点:1)简单且易于实现;2)测试精度较高;3)可解释性强.
- 翟俊海刘博张素芳
- 关键词:数据预处理遗传算法
- 基于粗糙集相对分类信息熵和粒子群优化的特征选择方法被引量:9
- 2017年
- 特征选择是指从初始特征全集中,依据既定规则筛选出特征子集的过程,是数据挖掘的重要预处理步骤。通过剔除冗余属性,以达到降低算法复杂度和提高算法性能的目的。针对离散值特征选择问题,提出了一种将粗糙集相对分类信息熵和粒子群算法相结合的特征选择方法,依托粒子群算法,以相对分类信息熵作为适应度函数,并与其他基于进化算法的特征选择方法进行了实验比较,实验结果表明本文提出的方法具有一定的优势。
- 翟俊海刘博张素芳
- 关键词:数据预处理粗糙集决策表信息熵适应度函数