中心引力优化算法(Central Force Optimization)是一种新型的基于天体力学的多维搜索优化算法.这是一种确定性的优化算法,该算法利用一组"质子"在引力作用下的运动,搜索决策空间最优值.但该算法仍然有局部收敛的特点.本文对该算法中质子运动方程做了分析研究,利用天体力学中的摄动理论对算法进行了改进,给出了改进后的新的CFO算法的迭代公式,并且对新的公式进行了分析.最后实验结果表明针对CFO算法的摄动改进可以使得搜索质子跳过CFO空间中的局部解,使得算法收敛精度和速度都有了不同程度的提高.
中心引力优化算法(central force optimization,简称CFO)是一种新型的基于天体动力学的多维搜索优化算法.该算法是一种确定性的优化算法,利用一组质子在万有引力作用下的运动,搜索目标函数在决策空间上的最优值.利用天体力学理论对该算法中质子运动方程进行了深入的研究,并利用天体力学中万有引力定理对质子运动方程进行了推导,建立起天体力学与CFO算法之间的联系,通过天体力学中数学分析的方法对该算法中质子收敛性能进行了分析,最后,通过严格的数学推导证明出:无论初始时质子是何种分布,CFO算法中所有的质子始终都会收敛于CFO空间的确定最优解.作为测试效果,将CFO算法与常见的BP训练算法相结合,提出了CFO-BP训练算法,优化前馈型人工神经网络的权值和结构.实验结果表明,采用CFO-BP算法优化神经网络比其他常见优化算法有更好的收敛精度和收敛速度.
中心引力优化算法(Central Force Optimization,CFO)是一种新型的基于天体动力学的多维搜索优化算法.该算法是一种确定性的优化算法,利用一组质子在万有引力作用下的运动,搜索决定空间的最优值,而这组质子按照两个来源于天体力学的迭代方程在空间移动.本文利用天体力学理论对该算法中质子运动方程做了深入的研究,并利用天体力学中万有引力定理对质子运动方程做了推导,建立起天体力学与CFO算法之间的联系,通过天体力学中数学分析的方法对该算法中质子收敛性能进行了分析,最后通过严格的数学推导证明出无论初始时质子是何种分布,CFO算法中所有的质子始终都会收敛于CFO空间的确定最优解.本文结论为了进一步深入研究该算法提供了理论基础.