孙晓雯
- 作品数:4 被引量:46H指数:4
- 供职机构:江南大学物联网工程学院更多>>
- 发文基金:江苏省自然科学基金国家自然科学基金中央高校基本科研业务费专项资金更多>>
- 相关领域:自动化与计算机技术更多>>
- 基于加速度传感器的人体跌倒检测方法被引量:22
- 2017年
- 针对人体跌倒检测阈值算法在由于阈值设定不当而引起的检测精度下降问题,采用支持向量机方法决定跌倒检测的阈值大小。从加速度传感器中获取人体运动信号,提取合加速度以及倾角作为分类特征,根据人体在跌倒时经过的失重、撞击地面和平稳三个阶段,建立基于阈值的跌倒检测模型。采用所建立的跌倒检测模型,分别用支持向量机方法以及人工方法设定阈值,仿真结果显示采用支持向量机设定阈值的检测效果优于对比算法,结果表明本文方法能有效识别跌倒。
- 孙子文孙晓雯
- 关键词:跌倒检测支持向量机加速度传感器
- 基于D-S证据理论的人体跌倒检测方法被引量:7
- 2018年
- 针对人体跌倒检测算法存在错误否定率高的问题,研究了一种基于D-S证据理论的人体跌倒检测算法。采用智能手机内置的加速度传感器和陀螺仪传感器获得人体手臂运动的三维方向的运动数据,采用三阶滑动平均滤波器对获得的两个传感器的三维原始数据进行预处理;从三维预处理后的数据中提取运动幅度、倾斜程度以及旋转程度三种特征;采用动态时间规整方法分别依据三种特征进行局部检测,局部检测结果作为证据被D-S证据理论组合规则所采用以得到最终融合的全局检测结果,其中各证据被证据权修正以避免证据冲突问题。实验结果显示,本文算法准确度高于对比方法,能有效提高检测性能。
- 孙子文李松孙晓雯
- 关键词:跌倒检测动态时间规整D-S证据理论加速度传感器陀螺仪
- 基于阈值与PSO-SVM的人体跌倒检测研究被引量:8
- 2016年
- 为提高人体跌倒检测精确度,提出一种基于智能手机加速度传感器的人体跌倒检测算法。通过智能手机获取人体运动加速度信息,采用阈值分类与模式识别分类相结合的算法进行跌倒检测。通过阈值检测实现人体行为跌倒状态的初步判定,判断是否为疑似跌倒行为。由模式识别方法进一步实现对疑似跌倒行为的精确分类,提取倾角和斜率作为人体跌倒分类特征,利用粒子群优化参数的支持向量机分类器从疑似跌倒行为中识别跌倒行为。仿真实验结果显示,与未优化的支持向量机方法以及加速度阈值方法相比,该算法能有效提高人体跌倒检测准确率。
- 孙晓雯孙子文秦昉
- 关键词:跌倒检测加速度传感器模式识别粒子群优化支持向量机
- 基于SVD特征降维和支持向量机的跌倒检测算法被引量:11
- 2017年
- 为减少跌倒对人体造成的伤害,采用一种基于支持向量机的人体跌倒检测方法。利用安置于腰上的手机采集人体运动行为加速度数据,提取对跌倒行为敏感的时域及频域特征,利用奇异值分解方法降维特征和重构跌倒特征,采用支持向量机分类器检测跌倒行为。仿真实验表明:该方法能够有效地识别跌倒和日常行为,具有较高灵敏度和特异度,并可同时提高识别正确率。
- 白勇孙晓雯秦昉孙子文
- 关键词:跌倒检测支持向量机奇异值分解