钟微宇
- 作品数:2 被引量:7H指数:2
- 供职机构:中国科学院研究生院更多>>
- 相关领域:自动化与计算机技术更多>>
- 结合多特征和SVM的SAR图像分割被引量:4
- 2013年
- 为实现灰度共生矩阵(GLCM)多尺度、多方向的纹理特征提取,提出了一种结合非下采样轮廓变换(NSCT)和GLCM的纹理特征提取方法。先用NSCT对合成孔径雷达(SAR)图像进行多尺度、多方向分解;再对得到的子带图像使用GLCM提取灰度共生量;然后对提取的灰度共生量进行相关性分析,去除冗余特征量,并将其与灰度特征构成多特征矢量;最后,充分利用支持向量机(SVM)在小样本数据库和泛化能力方面的优势,由SVM完成多特征矢量的划分,实现SAR图像分割。实验结果表明,基于NSCT域的GLCM纹理提取方法和多特征融合用于SAR图像分割,可以提高分割准确率,获得较好的边缘保持效果。
- 钟微宇沈汀
- 关键词:合成孔径雷达图像分割灰度共生矩阵多特征融合
- 基于NSCT域邻域收缩的SAR图像去噪被引量:3
- 2014年
- 针对合成孔径雷达(Synthetic Aperture Radar,SAR)图像受到相干斑噪声的干扰,严重影响了SAR图像的后续处理的问题,提出一种在非下采样轮廓变换(Nonsubsampled Contourlet Transform,NSCT)域将中值滤波和邻域收缩法相结合的SAR图像去噪算法。该算法对原始SAR图像进行NSCT分解,得到低频子带和高频子带图像,对低频子带使用中值滤波处理以去除低频子带中的低频噪声,利用NSCT分解系数之间的相关性,使用邻域收缩法对子带图的系数进行收缩,以消除高频子带中的高频噪声。实验证明,该算法与小波域邻域收缩去噪算法和NSCT硬阈值去噪算法相比,在去噪性能和视觉效果方面均有所提高,在消除噪声同时可以较好地保护纹理细节信息。
- 钟微宇沈汀
- 关键词:合成孔径雷达图像去噪