王路路
- 作品数:4 被引量:48H指数:2
- 供职机构:武汉大学计算机学院更多>>
- 发文基金:国家自然科学基金更多>>
- 相关领域:自动化与计算机技术医药卫生更多>>
- 基于多特征分类的微博好友推荐被引量:6
- 2015年
- 现有微博好友推荐算法使用的用户信息比较单一,不能充分利用微博用户信息来刻画用户特征,导致推荐效果不理想。为解决该问题,在综合分析用户标签信息、内容信息、交互信息以及社交拓扑信息的基础上,通过计算主题相关度、兴趣相关度、用户亲密度进行特征挖掘,并采用K最近邻分类算法为目标用户进行微博好友推荐。在新浪微博真实用户数据集上的实验结果表明,该算法的准确率、召回率、F1度量值分别为16.5%,26.8%,19.2%,推荐效果优于基于内容的推荐算法和基于社会过滤的推荐算法。
- 程倩倩王路路郑涛姬东鸿
- 关键词:主题相关度亲密度
- 基于语义共现图的中文微博新闻话题识别被引量:1
- 2014年
- 提出一种在大规模微博短文本数据集中自动发现新闻话题的方法。该方法在微博数据预处理之后,综合TF-IDF、文档频率增长率和命名实体识别等几个因素抽取微博数据中的主题词。根据主题词之间的语义关系来构建主题词的语义共现图,计算出语义共现图的连通子图,把每个不连通的簇集看成一个新闻话题。在新浪微博数据集上进行实验,实现了对微博中新闻话题的识别。该方法能较好检测出当前时间的热门话题,能够在一定程度上有效地避免错误传播,实验结果验证了该方法的有效性。
- 王路路郑涛程倩倩姬东鸿
- 基于用户属性和评分的协同过滤推荐算法被引量:39
- 2015年
- 为解决协同过滤推荐系统数据稀疏和冷启动带来的问题,提出一种相似度计算和评分预测算法。结合用户评分相似度、兴趣倾向相似度和置信度3方面,更充分地利用用户评分信息,使得用户相似度的计算更准确、区分度更高;使用sigmoid函数,实现冷启动状态下用户相似度计算时用户属性和用户评分信息的平滑过渡。在MovieLens真实数据集上进行实验,实验结果表明,该算法可有效提高评分预测的准确性,在一定程度上解决冷启动的问题。
- 丁少衡姬东鸿王路路
- 关键词:推荐系统协同过滤冷启动SIGMOID函数
- 基于PBTM的海量微博主题发现被引量:2
- 2015年
- BTM(biterm topic model)能较好挖掘出微博主题。但面对海量微博,BTM无法胜任,因为BTM挖掘主题速度过慢。基于此,提出一种基于吉布斯采样本主机biterm元组来更新主题单词全局矩阵的分布式的BTM模型PBTM(parallel biterm topic model),通过多台主机同时对语料库进行本主机biterm吉布斯采样,然后每次迭代后更新全局主题单词矩阵,直到采样收敛。通过MPI集群实现PBTM模型,实验结果表明,PBTM主题挖掘微博文本速度较BTM大大加快。
- 郑涛王路路杨冰姬东鸿
- 关键词:主题模型主题发现分布式计算