为了能够通过保留类内散布矩阵零空间的有效鉴别信息,并选择恰当的投影找到最大可能地区别类内类间的数据集,文章分别选用核主成分分析(KPCA)和零空间线性鉴别分析(null space LDA),其中核主成分分析(KPCA)是主成分分析(PCA)在核空间中的非线性推广,零空间线性鉴别分析利用了零空间的有效信息。文中将KPCA和NS-LDA的特征提取方法结合并应用于人脸识别研究,其综合了KPCA利用数据高阶性和经NS-LDA投影矩阵良好可分性的优点来增强人脸识别性能。实验结果证明,该方法能够有效地提高人脸识别率。