2025年5月18日
星期日
|
欢迎来到滨州市图书馆•公共文化服务平台
登录
|
注册
|
进入后台
[
APP下载]
[
APP下载]
扫一扫,既下载
全民阅读
职业技能
专家智库
参考咨询
您的位置:
专家智库
>
>
叶洪伟
作品数:
1
被引量:3
H指数:1
供职机构:
重庆大学光电工程学院光电技术及系统教育部重点实验室
更多>>
发文基金:
中央高校基本科研业务费专项资金
国家教育部博士点基金
更多>>
相关领域:
自动化与计算机技术
更多>>
合作作者
辜小花
重庆大学光电工程学院光电技术及...
杨利平
重庆大学光电工程学院光电技术及...
作品列表
供职机构
相关作者
所获基金
研究领域
题名
作者
机构
关键词
文摘
任意字段
作者
题名
机构
关键词
文摘
任意字段
在结果中检索
文献类型
1篇
中文期刊文章
领域
1篇
自动化与计算...
主题
1篇
降维
1篇
保局投影
机构
1篇
重庆大学
作者
1篇
杨利平
1篇
辜小花
1篇
叶洪伟
传媒
1篇
光学精密工程
年份
1篇
2011
共
1
条 记 录,以下是 1-1
全选
清除
导出
排序方式:
相关度排序
被引量排序
时效排序
用于分类的样本保局鉴别分析方法
被引量:3
2011年
针对高维数据分类中鉴别特征降维方法的小样本问题和有效维度丢失问题,结合最新提出的片对齐框架和保局投影提出了样本保局鉴别分析方法。该方法通过分别构造每个样本的类内近邻图和类外近邻图,并将所有样本的类内近邻图和类外近邻图结合起来,形成了所有样本的类内近邻和类外近邻关系。然后,在使所有样本的类内近邻尽可能地聚集在一起的同时使类外近邻尽可能地分开,得到从高维输入空间到低维特征空间的最优映射关系。该方法有效避免了高维数据分类的小样本问题且扩展了鉴别分析的低维特征空间的有效维度。在ORL、FERET和PIE等人脸库上的高维数据分类实验证实,样本保局鉴别分析方法显著优于经典的鉴别特征降维方法。与基于片对齐框架提出的鉴别局部对齐方法相比,样本保局鉴别分析方法在FERET库上的分类识别精度提高了4.5%以上。
杨利平
辜小花
叶洪伟
关键词:
保局投影
降维
全选
清除
导出
共1页
<
1
>
聚类工具
0
执行
隐藏
清空
用户登录
用户反馈
标题:
*标题长度不超过50
邮箱:
*
反馈意见:
反馈意见字数长度不超过255
验证码:
看不清楚?点击换一张