黄登成
- 作品数:2 被引量:112H指数:2
- 供职机构:辽宁工程技术大学测绘与地理科学学院更多>>
- 发文基金:国家科技支撑计划更多>>
- 相关领域:农业科学自动化与计算机技术更多>>
- 数据融合技术在提高NPP估算精度中的应用被引量:5
- 2014年
- 针对现有遥感数据不能同时满足在时间和空间上精确监测植被动态变化的问题,提出利用时空适应性反射率融合模型(STARFM)的方法对MODIS-NDVI和TM-NDVI影像数据进行融合处理获得30 m较高时空分辨率的融合NDVI影像,进而将多种尺度的MODIS-NDVI和融合NDVI数据分别输入到CASA模型,对锡林浩特地区进行植被净初级生产力(NPP)的多尺度估算。将不同尺度的NPP估算结果与地上生物量地面实测值进行验证比较,结果表明:随着输入NDVI空间分辨率的提高,NPP估算值与实测地上生物量之间的相关性也逐渐增大,r最大值达到了0.915。此外以融合NDVI影像作为输入数据之一的NPP估算值与实测地上生物量的相关性均比未融合NDVI的相关性高,说明融合NDVI估算NPP的效果较未融合NDVI好,并且以融合NDVI影像作为模型输入数据可提高NPP估算精度。
- 黄登成张丽尹晓利王昆
- 关键词:数据融合CASA模型净初级生产力
- 基于MODISNDVI多年时序数据的农作物种植识别被引量:107
- 2014年
- 为了获取陕西省农作物种植模式和类型分布信息,实现对于多年农作物长势分析及精确的估产和耕地生产力的估算,该文以2003-2012年的MOD09Q1时间序列遥感数据集为数据源,以陕西省主要农作物冬小麦、夏玉米、春玉米、水稻和油菜为研究对象,利用Savitzky-Golay滤波方法重建NDVI长时间序列数据集,充分利用农作物的物候信息,构建农作物年际间动态阈值方法,实现了农作物种植模式和类型的识别。通过对混合像元进行分解,更精确地提取农作物种植面积信息。利用空间和定量2种方式对农作物类型识别结果进行分析验证,空间对比分析得到分类的总体精度和Kappa系数为88.18%和59.64%,定量对比分析得到分类的总体一致性为87.56%。研究结果表明,结合物候信息与时间序列数据利用该文的分类方法可以有效的识别大尺度农作物信息。
- 许青云杨贵军龙慧灵王崇倡李鑫川黄登成
- 关键词:遥感农作物MODISNDVI