This study aimed to investigate the effect of varying pyrite(Py)content on copper(Cu)in the presence of different regrinding conditions,which were altered using different types of grinding media:iron,ceramic balls,and their mixture,followed by flotation in the cleaner stage.The flotation performance of rough Cu concentrate can be improved by changing the regrinding conditions based on the Py content.Scanning electron microscopy,X-ray spectrometry,ethylenediaminetetraacetic acid disodium salt extraction,and X-ray photoelectron spectroscopy studies illustrated that when the Py content was high,the use of iron media in regrinding promoted the generation of hydrophilic Fe OOH on the surface of Py and improved the Cu grade.The ceramic medium with a low Py content prevented excessive Fe OOH from covering the surface of chalcopyrite(Cpy).Electrochemical studies further showed that the galvanic corrosion current of Cpy-Py increased with the addition of Py and became stronger with the participation of iron media.
Mineral fulvic acid(MFA)was used as an eco-friendly pyrite depressant to recover chalcopyrite by flotation with the use of the butyl xanthate as a collector.Flotation experiments showed that MFA produced a stronger inhibition effect on pyrite than on chalcopyrite.The separation of chalcopyrite from pyrite was realized by introducing 150 mg/L MFA at a pulp pH of approximately 8.0.The copper grade,copper recovery,and separation efficiency were 28.03%,84.79%,and 71.66%,respectively.Surface adsorption tests,zeta potential determinations,and localized electrochemical impedance spectroscopy tests showed that more MFA adsorbed on pyrite than on chalcopyrite,which weakened the subsequent interactions between pyrite and the collector.Atomic force microscope imaging further confirmed the adsorption of MFA on pyrite,and X-ray photoelectron spectroscopy results indicated that hydrophilic Fe-based species on the pyrite surfaces increased after exposure of pyrite to MFA,thereby decreasing the floatability of pyrite.
This study was conducted in two sections.Initially,the effects of NaCl,MgCl_(2),and urea were investigated on extracting copper and iron from chalcopyrite.Subsequently,CuFe_(2)O_(4)-based electrodes for supercapacitors were synthesized using the extracted solution.The first phase revealed that 3 mol/L NaCl achieved the highest extraction performance,yielding 60%Cu and 23%Fe.MgCl_(2)at 1.5 mol/L extracted 52%Cu and 27%Fe,while a combination of 0.5 mol/L MgCl_(2)and 1.6 mol/L urea yielded 57%Cu and 20%Fe.Urea effectively reduced iron levels.CuFe_(2)O_(4)-based electrodes were then successfully synthesized via a hydrothermal method using a MgCl_(2)-urea solution.Characterization studies confirmed CuFe_(2)O_(4)formation with a 2D structure and 45−50 nm wall thickness on nickel foam.Electrochemical analysis showed a specific capacitance of 725 mF/cm^(2)at 2 mA/cm^(2)current density,with energy and power densities of 12.3 mW·h/cm^(2)and 175 mW/cm^(2),respectively.These findings suggest that chalcopyrite has the potential for direct use in energy storage.
Copper,an essential metal for the energy transition,is primarily obtained from chalcopyrite through hydrometallurgical and pyrometallurgical methods.The risks and harmful impacts of these processes pose significant concerns for environmental and human safety,highlighting the need for more efficient and eco-friendly hydrometallurgical methods.This review article emphasizes current pro-cesses such as oxidative leaching,bioleaching,and pressure leaching that have demonstrated efficiency in overcoming the complicated chalcopyrite network.Oxidative leaching operates under benign conditions within the leaching media;nevertheless,the introduction of oxidizing agents provides benefits and advantages.Bioleaching,a non-aggressive method,has shown a gradual increase in copper extrac-tion efficiency and has been explored using both primary and secondary sources.Pressure leaching,known for its effectiveness and se-lectivity in copper extraction,is becoming commercially more viable with increased research investments.This research also provides im-portant data for advancing future research in the field.
Darwin Michell Cheje MachacaAmilton Barbosa Botelho JuniorThamyres Cardoso de CarvalhoJorge Alberto Soares TenórioDenise Crocce Romano Espinosa
A novel small molecule depressant(M-DEP)was used to separate chalcopyrite and molybdenite via flotation.The results showed that M-DEP had an excellent selective depression on molybdenite,while had little effect on the flotation of chalcopyrite.The adsorption capacity of M-DEP on the surface of molybdenite was greater than that on chalcopyrite surface.The adsorption of M-DEP reduced the floatability of molybdenite and had less effect on the floatability of chalcopyrite,which was due to its different adsorption modes on the surface of the two minerals.Furthermore,the interaction between chalcopyrite and M-DEP was mainly chemical interaction,and almost all of the adsorbed M-DEP molecules were removed and replaced by sodium butyl xanthate(SBX).By contrast,hydrophobic interaction was the main way in which M-DEP was adsorbed on the molybdenite surface with little chemical interaction,which was less interfered by SBX addition.Therefore,M-DEP had a super selective depression on molybdenite.The study provided a novel depressant and approach for the deep separation of chalcopyrite and molybdenite via flotation.
The efficient separation of chalcopyrite(CuFeS2)and galena(PbS)is essential for optimal resource utilization.However,find-ing a selective depressant that is environmentally friendly and cost effective remains a challenge.Through various techniques,such as mi-croflotation tests,Fourier transform infrared spectroscopy,scanning electron microscopy(SEM)observation,X-ray photoelectron spec-troscopy(XPS),and Raman spectroscopy measurements,this study explored the use of ferric ions(Fe^(3+))as a selective depressant for ga-lena.The results of flotation tests revealed the impressive selective inhibition capabilities of Fe^(3+)when used alone.Surface analysis showed that Fe^(3+)significantly reduced the adsorption of isopropyl ethyl thionocarbamate(IPETC)on the galena surface while having a minimal impact on chalcopyrite.Further analysis using SEM,XPS,and Raman spectra revealed that Fe^(3+)can oxidize lead sulfide to form compact lead sulfate nanoparticles on the galena surface,effectively depressing IPETC adsorption and increasing surface hydrophilicity.These findings provide a promising solution for the efficient and environmentally responsible separation of chalcopyrite and galena.
Qiancheng ZhangLimin ZhangFeng JiangHonghu TangLi WangWei Sun
The leaching of Cu from low-grade polymetallic complex chalcopyrite ore(LPCCO)in acidic ferric electrolyte was increased by adding tartrate.To explain the reason resulting in this phenomenon,a systematical study about the effects of tartrate on the interfaces where reactions occurred was conducted by using electrochemical methods.The Mott−Schottky experiment results showed that whether tartrate was added or not,the initial n-type LPCCO surface transformed to the surface with a p−n junction that seriously hindered charge transfer.After adding tartrate,a shorter Debye length and higher charge carrier density were obtained,which were related to the decrease in intergranular energy barrier height by tartrate’s bridging semiconductor particles.Additionally,EIS results combined with Tafel and LSV analysis revealed thin passive film and double-layer,large diffusion coefficient,and low apparent activation energy.These favorable changes in interface properties facilitated the LPCCO dissolution.