搜索到9012篇“ MULTI-SENSOR“的相关文章
Disparity estimation for multi-scale multi-sensor fusion
2024年
The perception module of advanced driver assistance systems plays a vital role.Perception schemes often use a single sensor for data processing and environmental perception or adopt the information processing results of various sensors for the fusion of the detection layer.This paper proposes a multi-scale and multi-sensor data fusion strategy in the front end of perception and accomplishes a multi-sensor function disparity map generation scheme.A binocular stereo vision sensor composed of two cameras and a light deterction and ranging(LiDAR)sensor is used to jointly perceive the environment,and a multi-scale fusion scheme is employed to improve the accuracy of the disparity map.This solution not only has the advantages of dense perception of binocular stereo vision sensors but also considers the perception accuracy of LiDAR sensors.Experiments demonstrate that the multi-scale multi-sensor scheme proposed in this paper significantly improves disparity map estimation.
SUN GuoliangPEI ShanshanLONG QianZHENG SifaYANG Rui
Review of the field environmental sensing methods based on multi-sensor information fusion technology
2024年
Field environmental sensing can acquire real-time environmental information,which will be applied to field operation,through the fusion of multiple sensors.Multi-sensor fusion refers to the fusion of information obtained from multiple sensors using more advanced data processing methods.The main objective of applying this technology in field environment perception is to acquire real-time environmental information,making agricultural mechanical devices operate better in complex farmland environment with stronger sensing ability and operational accuracy.In this paper,the characteristics of sensors are studied to clarify the advantages and existing problems of each type of sensors and point out that multiple sensors can be introduced to compensate for the information loss.Secondly,the mainstream information fusion types at present are outlined.The characteristics,advantages and disadvantages of different fusion methods are analyzed.The important studies and applications related to multi-sensor information fusion technology published at home and abroad are listed.Eventually,the existing problems in the field environment sensing at present are summarized and the prospect for future of sensors precise sensing,multi-dimensional fusion strategies,discrepancies in sensor fusion and agricultural information processing are proposed in hope of providing reference for the deeper development of smart agriculture.
Yuanyuan ZhangBin ZhangCheng ShenHaolu LiuJicheng HuangKunpeng TianZhong Tang
关键词:MULTI-SENSOR
Robust multi-sensor image matching based on normalized self-similarity region descriptor
2024年
Multi-modal image matching is crucial in aerospace applications because it can fully exploit the complementary and valuable information contained in the amount and diversity of remote sensing images.However,it remains a challenging task due to significant non-linear radiometric,geometric differences,and noise across different sensors.To improve the performance of heterologous image matching,this paper proposes a normalized self-similarity region descriptor to extract consistent structural information.We first construct the pointwise self-similarity region descriptor based on the Euclidean distance between adjacent image blocks to reflect the structural properties of multi-modal images.Then,a linear normalization approach is used to form Modality Independent Region Descriptor(MIRD),which can effectively distinguish structural features such as points,lines,corners,and flat between multi-modal images.To further improve the matching accuracy,the included angle cosine similarity metric is adopted to exploit the directional vector information of multi-dimensional feature descriptors.The experimental results show that the proposed MIRD has better matching accuracy and robustness for various multi-modal image matching than the state-of-the-art methods.MIRD can effectively extract consistent geometric structure features and suppress the influence of SAR speckle noise using non-local neighboring image blocks operation,effectively applied to various multi-modal image matching.
Xuecong LIUXichao TENGJing LUOZhang LIQifeng YUYijie BIAN
A multi-sensor appiproach to calving detection
2024年
The advent of remote livestock monitoring systems provides numerous possibilities for improving on-farm productivity,efficiency,and welfare.One potential application for these systems is for the detection of calving events.This study describes the integration of data from multiple sensor sources,including accelerometers,global navigation satellite systems(GNsS),an accelerometer-derived rumination algorithm,a walk-over-weigh unit,and a weather station for parturition detection using a support vector machine approach.The best performing model utilised data from GNsS,the ruminating algorithm,and weather stations to achieve 98.6%accuracy,with 88.5%sensitivity and 100%specificity.The topranking features of this model were primarily GNSS derived.This study provides an overview as to how various sensor systems could be integrated on-farm to maximise calving detection for improved production and welfare outcomes.
Anita Z.ChangDavid L.SwainMark G.Trotter
关键词:ACCELEROMETERGNSSRUMINATIONWOW
多传感器融合SLAM研究综述
2024年
如今,移动机器人技术的发展使得同步定位与建图(SLAM)技术越来越受到学者的关注。在未知环境下,使移动机器人能够自主完成建图或者探索,是SLAM最基本的要求。在过去的十年,单传感器为机器人的建图和探索提供了良好的效果,而多传感器融合SLAM则以其强鲁棒、高精度的技术特性,为提升移动机器人建图的精度和速度提供了更高的可能性,成为了SLAM发展的主要研究方向。文中总结了现今多传感器融合SLAM的方案,首先对单传感器方案进行了比较;然后对多传感器融合技术的方案进行了对比;最后,分析了多传感器融合SLAM的难点与解决方案,并对多传感器融合SLAM的未来与发展进行了探讨。
高强陆科帆吉月辉吉月辉许亮刘俊杰
关键词:移动机器人单传感器多传感器融合
视觉及多传感器数据融合的关键技术研究
2024年
多传感器融合是现代信息技术领域一个前景很广阔的研究方向,由于单一传感设备所采集的数据在融合算法计算时会具有一定的局限性,因此将2种或2种以上的传感设备所采集来的数据通过融合算法进行计算与优势集成的方案,已经逐渐成为数据融合领域的研究热点。主要介绍传感器数据融合的创新及关键技术,多传感器底层数据收集的复杂性,往往有大量的数据需要处理,将不同类型的传感器数据进行实时采集、融合、存储、传输并显示。
李长武周晓宇高苇张博文魏莹
关键词:多传感器数据融合传感器
基于改进自适应加权的多传感器信息数据融合方法
2024年
多传感器采集的数据在数据特征和数据形式上存在较大差异,导致当前融合方法在加权过程中很难确定权值,融合效果差。文章提出一种基于改进自适应加权的多传感器信息数据融合方法,首先,进行多传感器信息数据的采集与预处理;其次,初始化每个传感器采样信息的权重;然后,根据调整后的权重对每个传感器的数据进行加权融合系数的自适应调整;最后,通过数据集合中同属性信息的聚类,实现对数据信息的融合处理。试验结果表明,所设计方法的实际应用效果更好,按照规范使用该方法进行多传感器信息数据融合,能够达到最优融合状态。
张亮
关键词:自适应调整多传感器信息数据
两级融合的多传感器数据融合算法研究
2024年
针对智慧工厂监测环境中多源数据融合精度问题,提出了一种两级融合的多传感器数据融合方法,旨在提高多源数据融合的准确性和可靠性。该方法分为一级数据融合和二级决策融合,首先采用卡尔曼滤波结合自适应加权平均对同类型传感器进行数据降噪融合处理,其次利用人工兔优化算法(ARO)优化ELM神经网络进行决策融合。实验结果表明,基于ARO优化ELM神经网络的多传感器数据融合算法在融合精度方面优于其他先进算法。经验证,所提出的两级融合多传感器数据融合方法具有更好的融合性能,有效提升感知系统的可靠性和鲁棒性,实现更加准确和可靠的监测和预测。
彭道刚段睿杰王丹豪
关键词:多传感器数据融合卡尔曼滤波
基于极大似然的联合多传感器配准与融合
2024年
传感器配准和多源融合是多传感器多目标跟踪系统中面临的两个重要问题。多传感器融合的精度一定程度上与传感器固有系统误差相关,为提高融合精度,需要进行多传感器配准。在多传感器多目标跟踪场景下,文中根据传感器量测噪声特性,通过公式推导实现了一种基于极大似然的联合多传感器配准与融合算法。该算法可同时在采样时刻间对传感器系统偏差和目标融合位置进行估计,并对传感器系统误差进行时间递推。仿真结果表明,文中算法具有较高的估计精度,可同时解决多传感器的配准与融合问题。
周学平谢依妨
关键词:极大似然多目标跟踪
多传感器协同区域搜索与目标跟踪的调度方法
2024年
为解决区域搜索和目标跟踪2种任务协同时对传感器资源的竞争问题,提出了一种多传感器调度方法。针对双任务协同背景,将传感器调度转换为多目标优化问题,以搜索性能和跟踪性能为优化目标建立了目标函数;建立了区域搜索模型,考虑目标的新生、消亡和转移,将未被发现目标的更新过程建立为非齐次泊松过程,提出以漏警损失量化区域搜索性能;建立了目标跟踪模型,引入后验克拉美罗下界(PCRLB)量化未来时刻的跟踪性能;针对最优调度方案求解,在传统多目标差分进化算法的基础上,引入混沌映射理论和双种群协同方法,提出了混沌映射-多目标协同差分进化算法(CM-MOCDEA)以提高寻优能力。仿真实验验证了所提优化算法能够兼顾收敛性和多样性,具有较强的全局搜索能力;所提方法能够有效分配传感器资源完成区域搜索和目标跟踪任务,从而获得较高的作战收益。
张昀普付强单甘霖黄燕
关键词:区域搜索目标跟踪多目标优化

相关作者

张彬
作品数:60被引量:84H指数:5
供职机构:山东科技大学
研究主题:小波变换 图像融合 基于小波变换 教学改革 地方高校
吕利昌
作品数:74被引量:20H指数:3
供职机构:深圳职业技术学院
研究主题:集控系统 控制系统 多媒体 耳机 图书
陶云刚
作品数:53被引量:333H指数:11
供职机构:南京航空航天大学民航学院
研究主题:智能结构 复合材料 数据融合 传感器 振动
骆英
作品数:213被引量:634H指数:12
供职机构:江苏大学土木工程与力学学院
研究主题:压电复合材料 正交异性 声发射 LAMB波 混凝土
郑永果
作品数:108被引量:342H指数:9
供职机构:山东科技大学
研究主题:图像融合 小波变换 计算机图形学 B样条 基于小波变换