Combining single atoms with clusters or nanoparticles is an emerging tactic to design efficient electrocatalysts.Both synergy effect and high atomic utilization of active sites in the composite catalysts result in enhanced electrocatalytic performance,simultaneously provide a radical analysis of the interrelationship between structure and activity.In this review,the recent advances of single-atomic site catalysts coupled with clusters or nanoparticles are emphasized.Firstly,the synthetic strategies,characterization,dynamics and types of single atoms coupled with clusters/nanoparticles are introduced,and then the key factors controlling the structure of the composite catalysts are discussed.Next,several clean energy catalytic reactions performed over the synergistic composite catalysts are illustrated.Eventually,the encountering challenges and recommendations for the future advancement of synergistic structure in energy-transformation electrocatalysis are outlined.
Guanyu LuoMin SongQian ZhangLulu AnTao ShenShuang WangHanyu HuXiao HuangDeli Wang
Climate change has been a global pandemic with its adverse impacts affecting environments and livelihoods. This has been largely attributed to anthropogenic activities which generate large amounts of Green House Gases (GHGs), notably carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) among others. In the Upper East of Ghana, climate change manifests in erratic rainfalls, drought, high temperatures, high wind speeds, high intensity rainfall, windstorms, flooding, declining vegetation cover, perennial devastating bushfires etc. Practices such as burning farm residues, use of dung as fuel for cooking, excessive application of nitrogenous fertilizers, and deforestation that are prevalent in the region exacerbate the situation. Although, efforts made by governmental and none-governmental organizations to mitigate climate change through afforestation, agroforestry and promotion of less fuelwood consuming cook stoves, land management practices antagonize these efforts as more CO2 is generated than the carrying capacity of vegetation in the region. Research findings have established the role of trees and soil in carbon sequestration in mitigating climate. However, there is limited knowledge on how the vegetation and soil in agroforestry interplay in mitigation climate change. It is against this background that this review seeks to investigate how vegetation and soil in an agroforestry interact synergistically to sequester carbon and contribute to mitigating climate change in Upper East region of Ghana. In this review, it was discovered soil stored more carbon than vegetation in an agroforestry system and is much effective in mitigating climate change. It was found out that in order to make soil and vegetation in an agroforestry system interact synergistically to effectively mitigate climate change, Climate Smart Agriculture practice which integrates trees, and perennials crops effectively mitigates climate. The review concluded that tillage practices that ensure retention and storage of soil organic carbon (SOC
Joshua A. AdombireAbdul-Wahab M. ImoroEunice EsselNang B. Douti
This research paper presents a novel optimization method called the Synergistic Swarm Optimization Algorithm(SSOA).The SSOA combines the principles of swarmintelligence and synergistic cooperation to search for optimal solutions efficiently.A synergistic cooperation mechanism is employed,where particles exchange information and learn from each other to improve their search behaviors.This cooperation enhances the exploitation of promising regions in the search space while maintaining exploration capabilities.Furthermore,adaptive mechanisms,such as dynamic parameter adjustment and diversification strategies,are incorporated to balance exploration and exploitation.By leveraging the collaborative nature of swarm intelligence and integrating synergistic cooperation,the SSOAmethod aims to achieve superior convergence speed and solution quality performance compared to other optimization algorithms.The effectiveness of the proposed SSOA is investigated in solving the 23 benchmark functions and various engineering design problems.The experimental results highlight the effectiveness and potential of the SSOA method in addressing challenging optimization problems,making it a promising tool for a wide range of applications in engineering and beyond.Matlab codes of SSOA are available at:https://www.mathworks.com/matlabcentral/fileexchange/153466-synergistic-swarm-optimization-algorithm.
Covalent adaptable networks(CANs),comprising polymer networks crosslinked by dynamic covalent bonds(DCBs),have garnered considerable attention as sustainable materials.Mastering the stress relaxation of CANs is essential for controlling their viscoelastic properties.An unexpected acceleration of stress relaxation has been observed in CANs containing dual dynamic bonds.The dynamic behavior of the second dynamic bonds can accelerate stress relaxation and lower the relaxation activation energy of dual dynamic CANs compared to analogous CANs that rely on only one type of DCB.These findings complement current approaches that utilize catalysts or adjust network parameters.In this minireview,we summarize the synergistic acceleration effects in various CANs containing dual dynamic bonds.We classify these effects based on the second dynamic bonds,including noncovalent bonds,mechanical bonds,and the second DCBs.We also discuss the mechanisms behind this synergy.Finally,we highlight the challenges and offer perspectives on harnessing the synergistic effects of these dual dynamic systems to expand the chemistry and applications of CANs.
The synergistic damage effect of irradiation and corrosion of reactor structural materials has been a prominent research focus.This paper provides a comprehensive review of the synergistic effects on the third-and fourth-generation fission nuclear energy structural materials used in pressurized water reactors and molten salt reactors.The competitive mechanisms of multiple influencing factors,such as the irradiation dose,corrosion type,and environmental temperature,are summarized in this paper.Conceptual approaches are proposed to alleviate the synergistic damage caused by irradiation and corrosion,thereby promoting in-depth research in the future and solving this key challenge for the structural materials used in reactors.
Resistance to cancer immunotherapy is mainly attributed to poor tumor immunogenicity as well as the immunosuppressive tumor microenvironment(TME)leading to failure of immune response.Numerous therapeutic strategies including chemotherapy,radiotherapy,photodynamic,photothermal,magnetic,chemodynamic,sonodynamic and oncolytic therapy,have been developed to induce immunogenic cell death(ICD)of cancer cells and thereby elicit immunogenicity and boost the antitumor immune response.However,many challenges hamper the clinical application of ICD inducers resulting in modest immunogenic response.Here,we outline the current state of using nanomedicines for boosting ICD of cancer cells.Moreover,synergistic approaches used in combination with ICD inducing nanomedicines for remodeling the TME via targeting immune checkpoints,phagocytosis,macrophage polarization,tumor hypoxia,autophagy and stromal modulation to enhance immunogenicity of dying cancer cells were analyzed.We further highlight the emerging trends of using nanomaterials for triggering amplified ICD-mediated antitumor immune responses.Endoplasmic reticulum localized ICD,focused ultrasound hyperthermia,cell membrane camouflaged nanomedicines,amplified reactive oxygen species(ROS)generation,metallo-immunotherapy,ion modulators and engineered bacteria are among the most innovative approaches.Various challenges,merits and demerits of ICD inducer nanomedicines were also discussed with shedding light on the future role of this technology in improving the outcomes of cancer immunotherapy.
Ahmed O.ElzoghbyOmar SamirHagar E.EmamAhmed SolimanRiham M.AbdelgalilYomna M.ElmorshedyKadria A.ElkhodairyMahmoud L.Nasr
CO_(2) mineralization plays a critical role in the storage and utilization of CO_(2).Coal fly ash(CFA)and red mud(RM)are widely utilized as CO_(2) mineralizers.However,the inert calcium species in CFA limit its carbonation capacity,meanwhile the substantial Ca^(2+)releasing of RM is hindered by a covering layer of calcium carbonate.In this study,CO_(2) mineralization in a composite system of CFA and RM was investigated to enhance the carbonation capacity.Multiple analyzers were employed to characterize the raw materials and resulting mineralization products.The results demonstrated that a synergistic effect existed in the composite system of CFA and RM,resulting in improving CO_(2) mineralization rate and efficiency.The produced calcium carbonate was ectopically attached the surface of CFA in the composite system,thus slowing down its coverage on the surface of RM.This phenomenon facilitated further releasing Ca^(2+)from the internal RM,thereby enhancing CO_(2) mineralization efficiency.Meanwhile,the inclusion of RM significantly improved the alkalinity of the composite system,which not only promoted the dissolution of Ca^(2+)of the inert CaSO4(H2O)2 in CFA,but also accelerated CO_(2) mineralization rate.The investigation would be beneficial to CO_(2) mineralization using industrial solid wastes.
Metal-air batteries,fuel cells,and electrochemical H_(2)O2 production currently attract substantial consideration in the energy sector owing to their efficiency and eco-consciousness.However,their broader use is hindered by the complex oxygen reduction reaction(ORR)that occurs at cathodes and involves intricate electron transfers.Despite the significant ORR performance of platinum-based catalysts,their high cost,operational limitations,and susceptibility to methanol poisoning hinder broader implementation.This emphasizes the need for efficient nonprecious metal-based ORR electrocatalysts.A promising approach involves utilizing single-atom catalysts(SACs)featuring metal-nitrogen-carbon(M-N-C)coordination sites.SACs offer advantages such as optimal utilization of metal atoms,uniform active centers,precisely defined catalytic sites,and robust metal-support interactions.However,the symmetrical electron distribution around the central metal atom of a single-atom site(M-N4)often results in suboptimal ORR performance.This challenge can be addressed by carefully tailoring the surrounding environment of the active center.This review specifically focuses on recent advancements in the Fe-N4 environment within Fe-N-C SACs.It highlights the promising strategy of coupling Fe-N4 sites with metal clusters and/or nanoparticles,which enhances intrinsic activity.By capitalizing on the interplay between Fe-N4 sites and associated species,overall ORR performance improved.The review combines findings from experimental studies and density functional theory simulations,covering synthesis strategies for Fe-N-C coupled synergistic catalysts,characterization techniques,and the influence of associated particles on ORR activity.By offering a comprehensive outlook,the review aims to encourage research into high-efficiency Fe single-atom sites coupled synergistic catalysts for real-world applications in the coming years.