目的人脸姿态偏转是影响人脸识别准确率的一个重要因素,本文利用3维人脸重建中常用的3维形变模型以及深度卷积神经网络,提出一种用于多姿态人脸识别的人脸姿态矫正算法,在一定程度上提高了大姿态下人脸识别的准确率。方法对传统的3维形变模型拟合方法进行改进,利用人脸形状参数和表情参数对3维形变模型进行建模,针对面部不同区域的关键点赋予不同的权值,加权拟合3维形变模型,使得具有不同姿态和面部表情的人脸图像拟合效果更好。然后,对3维人脸模型进行姿态矫正并利用深度学习对人脸图像进行修复,修复不规则的人脸空洞区域,并使用最新的局部卷积技术同时在新的数据集上重新训练卷积神经网络,使得网络参数达到最优。结果在LFW(labeled faces in the wild)人脸数据库和Stirling ESRC(Economic Social Research Council)3维人脸数据库上,将本文算法与其他方法进行比较,实验结果表明,本文算法的人脸识别精度有一定程度的提高。在LFW数据库上,通过对具有任意姿态的人脸图像进行姿态矫正和修复后,本文方法达到了96.57%的人脸识别精确度。在Stirling ESRC数据库上,本文方法在人脸姿态为±22°的情况下,人脸识别准确率分别提高5.195%和2.265%;在人脸姿态为±45°情况下,人脸识别准确率分别提高5.875%和11.095%;平均人脸识别率分别提高5.53%和7.13%。对比实验结果表明,本文提出的人脸姿态矫正算法有效提高了人脸识别的准确率。结论本文提出的人脸姿态矫正算法,综合了3维形变模型和深度学习模型的优点,在各个人脸姿态角度下,均能使人脸识别准确率在一定程度上有所提高。
由于2D人脸识别率容易受到姿态、表情、光照以及自身遮挡影响的问题,这一定程度上阻碍了2D人脸识别技术的鲁棒性与发展。而3D人脸数据提供了在3D人脸领域很有前景的特征描述,也有很大潜力提高人脸识别技术的识别率。针对二维人脸识别中的局限性,先对三维人脸数据进行预处理,人脸分割、平滑去燥等,提出了一种改进的三维人脸分割的方法。改进了三维人脸进行特征提取,使用平均曲率,高斯曲率,增加了协方差,拉普拉斯算子等描述符,且融合其最佳的描述符组合作为三维人脸的特征,计算基于网格局部二值模式(Mesh-LBP)进行提取特征,最后使用支持向量机(SVM)进行三维人脸的分类识别。通过在中国科学院自动化研究所(CASIA)的提供的数据集CASIA 3D face v1分别对高斯曲率、最大最小曲率、平均曲率、协方差、形状指数进行实验,其中平均曲率获得最高识别率93. 17%。实验结果表明,该方法有效地减少了受光照、姿态等变化的影响,且具有较好的鲁棒性和较高的识别率。