A novel parameter extraction method with rational functions is presented for the 2-πequivalent circuit model of RF CMOS spiral inductors. The final S-parameters simulated by the circuit model closely match experimental data. The extraction strategy is straightforward and can be easily implemented as a CAD tool to model spiral inductors. The resulting circuit models will be very useful for RF circuit designers.
A novel large-signal equivalent circuit model of RF-SOI LDMOS based on Philips MOS Model 20 (MM20) is presented. The weak avalanche effect and the power dissipation caused by self-heating are described. The RF parasitic elements are extracted directly from measured S-parameters with analytical methods. Their final values can be obtained quickly and accurately through the necessary optimization. The model is validated in DC,AC small-signal,and large-signal analyses for an RF-SOI LDMOS of 20-fingers (channel mask length, L = 1μm,finger width, W = 50μm) gate with high resistivity substrate and body-contact. Excellent agreement is achieved between simulated and measured results for DC, S- parameters (10MHz-0.01GHz), and power characteristics, which shows our model is accurate and reliable. MM20 is improved for RF-SOI LDMOS large-signal applications. This model has been implemented in Verilog-A using the ADS circuit simulator (hpeesofsim).
基于Dyakonov-Shur效应(D-S效应)利用MOSFET可构建太赫兹源。研究表明MOSFET沟道内的1 m V信号在偏置电压的作用下产生波动并形成等离子波,其电学特性与谐振腔相似。当MOSFET外接5 V的偏置电压源时,输出频率为2.15 THz、峰值为2 m V的等离子信号。通过调节偏置电压(1-20 V)可以使输出信号在0.96-4.30 THz范围内调频。此外,MOSFET在5 V的偏置电压和5 A的偏置电流的共同作用下,沟道内产生的等离子波随时间的推移以指数形式放大。受器件限制和沟道夹断效应影响,该信号源的最大输出电压为20 V,电压增益最大可达到86 d B,最大输出功率为200 W。在器件允许范围内,偏置电压越大信号频率越高、偏置电流越大起振时间越短,且偏置电流引起的信号频偏小。
A fully integrated CMOS bio-chip is designed in a SMIC 0.18μm CMOS mixed signal process and successfully integrated with a novel bio-nano-system. The proposed circuit integrates an array of 4 × 4 (16 pixels) of 19μm × 19μm electrodes,a counter electrode, a current mode preamplifier circuit (CMPA) ,a digital decoding circuit,and control logics on a single chip, It provides a - 1.6- 1.6V range of assembly voltage,Sbit potential resolution, and a current gain of 39.8dB with supply voltage of 1.8V. The offset and noise are smaller than 5.9nA and 25.3pArms,respectively. Experimental resuits from on-chip selective assembly of 30nm poly (ethylene glycol) (PEG) coated magnetic nano-particles (MNPs) targeted at biosensor applications are included and discussed to verify the feasibility of the proposed circuits.