童智靖
- 作品数:5 被引量:102H指数:4
- 供职机构:哈尔滨工程大学信息与通信工程学院更多>>
- 发文基金:中国博士后科学基金国家教育部博士点基金国家自然科学基金更多>>
- 相关领域:自动化与计算机技术机械工程更多>>
- 基于ODR和BSMOTE结合的不均衡数据SVM分类算法被引量:22
- 2011年
- 针对传统的支持向量机(SVM)算法在数据不均衡的情况下分类效果不理想的缺陷,为了提高SVM算法在不均衡数据集下的分类性能,提出一种新型的逐级优化递减欠采样算法.该算法去除样本中大量重叠的冗余和噪声样本,使得在减少数据的同时保留更多的有用信息,并且与边界人工少数类过采样算法相结合实现训练样本数据集的均衡.实验表明,该算法不但能有效提高SVM算法在不均衡数据中少数类的分类性能,而且总体分类性能也有所提高.
- 陶新民童智靖刘玉付丹丹
- 关键词:不均衡数据支持向量机算法
- 不均衡数据下基于阴性免疫的过抽样新算法被引量:12
- 2010年
- 为提高不均衡数据集下算法分类性能,提出一种基于阴性免疫的过抽样算法.该算法利用阴性免疫实现少数类样本空间覆盖,以生成的检测器中心为人工生成的少数类样本.由于该算法利用的是多数类样本信息生成少数类样本,避免了人工少数类过抽样技术(SMOTE)生成的人工样本缺乏空间代表性的不足.通过实验将此算法与SMOTE算法及其改进算法进行比较,结果表明,该算法不仅有效提高了少数类样本的分类性能,而且总体分类性能也有了显著提高.
- 陶新民徐晶童智靖刘玉
- 关键词:不均衡数据
- 一种多尺度协同变异的粒子群优化算法被引量:48
- 2012年
- 为了改善粒子群算法易早熟收敛、精度低等缺点,提出一种多尺度协同变异的粒子群优化算法,并证明了该算法以概率1收敛到全局最优解.算法采用多尺度高斯变异机制实现局部解逃逸.在算法初期阶段,利用大尺度变异及均匀变异算子实现全局最优解空间的快速定位;随着适应值的提升,变异尺度随之降低;最终在算法后期阶段,利用小尺度变异算子完成局部精确解空间的搜索.将算法应用6个典型复杂函数优化问题,并同其他带变异操作的PSO算法比较,结果表明,该算法在收敛速度及稳定性上有显著提高.
- 陶新民刘福荣刘玉童智靖
- 关键词:粒子群算法早熟收敛多尺度适应度
- 不均衡数据下基于SVM的故障检测新算法被引量:21
- 2010年
- 针对传统支持向量机(SVM)算法在数据不均衡情况下无法有效实现故障检测的不足,提出一种基于过抽样和代价敏感支持向量机相结合的故障检测新算法。该算法首先利用边界人工少数类过抽样技术(BSMOTE)实现训练样本的均衡。为减少人工增加样本带来的噪声影响,利用K近邻构造一个代价敏感的支持向量机(CSSVM)算法,利用每个样本的代价函数消除噪声样本对SVM算法分类精度的影响。将该算法应用在轴承故障检测中,并同传统的SVM算法,不同类代价敏感SVM-C算法,SVM和SMOTE相结合的算法进行比较,试验结果表明当样本不均衡时,建议算法的故障检测性能较其它算法有显著提高。
- 陶新民刘福荣童智靖杨立标
- 关键词:故障检测支持向量机
- 求解最小属性约简的病毒协同进化微粒群算法被引量:4
- 2012年
- 提出一种基于病毒协同进化微粒群的最小属性约简算法.在算法中,进化在宿主与病毒种群之间协同进行,通过满足约简分辨力不变条件的最优病毒种子复制操作产生病毒库,病毒通过感染操作在宿主种群完成横向局部搜索,以提高算法局部精确解搜索能力;同时通过删减操作完成自我更新,实现增加局部搜索范围的目的.最后对UCI数据集进行属性约简实验,结果表明该算法在搜索最小属性约简解方面优于其他进化算法,同时收敛速度及寻优效率也有较大提高.
- 陶新民王妍徐晶童智靖
- 关键词:属性约简微粒群算法病毒库协同进化