牟丹
- 作品数:2 被引量:85H指数:2
- 供职机构:吉林大学地球探测科学与技术学院更多>>
- 发文基金:国家重点基础研究发展计划中国石油天然气股份有限公司科学研究与技术开发项目更多>>
- 相关领域:天文地球更多>>
- 基于最小二乘支持向量机测井识别火山岩类型:以辽河盆地中基性火山岩为例被引量:17
- 2015年
- 最小二乘支持向量机是在统计学习理论基础上发展起来的模式识别方法。与传统统计学相比,它能有效解决有限样本、非线性、高维数模型的建立问题,而且建立的模型具有很好的预测性能。岩性识别本质是解决分类问题,本文基于最小二乘支持向量机解决分类问题的优势,首先用GR、CNL、DEN、AC、RLLD等常规测井曲线数据建立样本空间;然后通过耦合模拟退火和交叉验证的方法寻找最佳参数,优化最小二乘支持向量机分类器;最后建立了最小二乘支持向量机岩性识别模型。通过取心段岩心描述和岩心/岩屑薄片鉴定,确定辽河盆地40口井315m井段2 520个岩性样品作为训练样本,建立岩性识别标准。对8口井13 866m井段110 928个火山岩数据采样点进行测井识别,可识别致密玄武岩、气孔玄武岩、粗面岩等8种主要火山岩类型。识别结果与8口测试井中316个有取心段岩心描述和岩心/岩屑薄片的精确岩矿定名对比,符合率达到75.2%,与以往测井识别复杂火山岩岩性相比,在识别准确率和效率上都有明显提高。
- 牟丹王祝文黄玉龙许石周大鹏
- 关键词:最小二乘支持向量机火山岩
- 基于SVM测井数据的火山岩岩性识别——以辽河盆地东部坳陷为例被引量:70
- 2015年
- 辽河盆地东部坳陷储集层由火山多期喷发形成,岩相岩性复杂,岩性以中、基性火山岩为主.本文将火山岩的岩心及岩矿鉴定资料与测井数据进行整合,应用测井数据建立支持向量机(SVM)两分类和多分类岩性识别模式.首先,深入研究支持向量机二分类及"一对一"、"一对多"和有向无环图三种经典多分类算法的基本原理及结构;然后,总结研究区域火山岩岩石特征,分析测井数据的测井响应组合特征,选择40口井中岩心分析和薄片鉴定资料完整、常规五种测井曲线(RLLD,CNL,DEN,AC,GR)齐全的1200个测井数据作为训练样本,构造三种支持向量机岩性识别模式;最后,对4测试井中800个测井数据进行岩性识别,识别结果与取心段岩心描述和岩心/岩屑薄片鉴定资料对比,实验结果表明有向无环图更适合辽河盆地火山岩的识别,识别正确率达到82.3%.
- 牟丹王祝文黄玉龙许石周大鹏
- 关键词:火山岩岩性识别测井响应